Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem J ; 481(4): 279-293, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314636

RESUMEN

Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.


Asunto(s)
Difosfatos , Prunus avium , Vitamina E , Vitamina E/metabolismo , Frutas , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Tocoferoles/metabolismo , Clorofila/metabolismo , Fitol/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plants (Basel) ; 11(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36559686

RESUMEN

Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.

3.
BMC Plant Biol ; 20(1): 176, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321430

RESUMEN

BACKGROUND: Jasmonates play an important role in plant stress and defence responses and are also involved in the regulation of anthocyanin synthesis in response to sucrose availability. Here we explore the signalling interactions between sucrose and jasmonates in response to cold stress in Arabidopsis. RESULTS: Sucrose and cold treatments increased anthocyanin content additively. Comprehensive profiling of phytohormone contents demonstrated that jasmonates, salicylic acid and abscisic acid contents increased in response to sucrose treatment in plants grown on agar, but remained considerably lower than in plants grown in compost. The gibberellin GA3 accumulated in response to sucrose treatment but only at warm temperature. The role of jasmonate signalling was explored using the jasmonate response mutants jar1-1 and coi1-16. While the jar1-1 mutant lacked jasmonate-isoleucine and jasmonate-leucine, it accumulated 12-oxo-phytodienoic acid at low temperature on agar medium. Altered patterns of abscisic acid accumulation and higher sugar contents were found in the coi1-16 mutant when grown in compost. Both mutants were able to accumulate anthocyanin and to cold acclimate, but the jar-1-1 mutant showed a larger initial drop in whole-rosette photosystem II efficiency upon transfer to low temperature. CONCLUSIONS: Hormone contents are determined by interactions between temperature and sucrose supply. Some of these effects may be caused indirectly through senescence initiation in response to sucrose availability. During cold stress, the adjustments of hormone contents may compensate for impaired jasmonate signalling, enabling cold acclimation and anthocyanin accumulation in Arabidopsis jasmonate response mutants, e.g. through antagonistic interactions between gibberellin and jasmonate signalling.


Asunto(s)
Arabidopsis/fisiología , Respuesta al Choque por Frío/fisiología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/fisiología , Sacarosa/metabolismo , Ácido Abscísico/metabolismo , Ácido Salicílico/metabolismo
4.
Plant Physiol Biochem ; 140: 88-95, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31085450

RESUMEN

Although melatonin effects on postharvest fruit ripening have been studied in some detail, information is still scarce during pre-harvest. Here, we examined whether or not melatonin may exert a regulatory role during sweet cherries ripening in orchard trees. We evaluated (i) the endogenous variations in melatonin contents, in comparison to those of well-known phytohormones such as ABA, salicylic acid and jsamonic acid, by ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) during fruit ripening over two consecutive years, and (ii) to what extent melatonin treatments at low and high concentrations (at 10-4 M and 10-5 M, respectively) influence fruit ripening on the tree. Endogenous melatonin contents decreased in parallel to those of salicylic acid and jasmonic acid, while ABA contents increased as fruit ripening progressed, thus suggesting an inhibitory role for melatonin in fruit ripening. Furthermore, melatonin treatment at 10-5 M, which transiently increased endogenous melatonin contents at physiological concentrations, delayed anthocyanin accumulation, thus confirming an inhibitory regulatory role for melatonin in fruit ripening. We also found that the endogenous contents of cytokinins, but not those of ABA were transiently affected by melatonin treatment at 10-5 M. It is concluded that melatonin may delay sweet cherries ripening in orchard trees, probably exerting a modulatory role through a hormonal cross-talk. These results have important implications for the use of melatonin in the control of the timing of sweet cherries ripening in orchard trees.


Asunto(s)
Melatonina/farmacología , Prunus avium/efectos de los fármacos , Prunus avium/metabolismo , Antocianinas/metabolismo , Frutas/efectos de los fármacos , Frutas/metabolismo , Espectrometría de Masas en Tándem
5.
N Biotechnol ; 33(6): 824-833, 2016 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-27475901

RESUMEN

Sweet cherries are highly appreciated by consumers worldwide and are usually cold-stored during postharvest to prevent over-ripening before distribution to the market. Sweet cherry is a non-climacteric fruit, for which ripening is known to be regulated by abscisic acid. Here we aimed to examine the hormone profiles, including measurements of abscisic acid, auxins, cytokinins and gibberellins by ultrahigh performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS), in relation to variations in sugar and anthocyanin contents, during growth and ripening of this fruit. Hormonal profiling revealed that indole-3-acetic acid, GA1 and trans-zeatin levels decreased at early stages of fruit development, while GA3 levels decreased at early stages but also later, once anthocyanin accumulation started. Conversely, abscisic acid levels rose significantly once the fruit started to synthetize anthocyanins, and isopentenyladenosine levels also increased during the ripening of sweet cherries. A strong negative correlation was found between GA4 levels and both fruit biomass and anthocyanin levels, and between the levels of trans-zeatin and both fruit biomass and total sugar contents. In contrast, abscisic acid and isopentenyladenosine levels correlated positively with fruit biomass, anthocyanin and total soluble sugar content. Results suggest that auxins, cytokinins and gibberellins may act coordinately with abscisic acid in the regulation of sweet cherry development and ripening. Furthermore, it is shown that hormonal profile measurements by UHPLC-MS/MS may be a helpful tool to elucidate the timing of action of each specific hormonal compound during ripening, which has important applications in the agri-food biotechnological sector.


Asunto(s)
Prunus avium/crecimiento & desarrollo , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Biotecnología , Metabolismo de los Hidratos de Carbono , Citocininas/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
6.
Front Plant Sci ; 7: 602, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27200070

RESUMEN

Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed.

7.
Phytochemistry ; 118: 1-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26241488

RESUMEN

Most angiosperms accumulate vitamin E in the form of tocopherols in seeds, exerting a protective antioxidant role. However, several palm trees principally accumulate tocotrienols, rather than tocopherols, in seeds, as it occurs in other monocots. To unravel the protective role of either tocopherols or tocotrienols against lipid peroxidation during seed germination in Chamaerops humilis var. humilis; seed viability, natural and induced germination capacity, seed water content, malondialdehyde levels (as an indicator of the extent of lipid peroxidation) and vitamin E levels (including both tocopherols and tocotrienols) were examined at various germination phases in a simulated, natural seed bank. At the very early stages of germination (operculum removal), malondialdehyde levels increased 2.8-fold, to decrease later up to 74%, thus indicating a transient lipid peroxidation at early stages of germination. Tocopherol levels were absent in quiescent seeds and did not increase during operculum removal, but increased later presumably dampening malondialdehyde accumulation. Thereafter, tocopherols continued increasing, while lipid peroxidation levels decreased. By contrast, tocotrienols levels remained constant or even decreased as germination progressed, showing no correlation with lipid peroxidation levels. We hypothesize that despite their high tocotrienol content, seeds synthesize tocopherols during germination to protect lipids from peroxidation events.


Asunto(s)
Arecaceae/química , Germinación , Semillas/química , Tocoferoles/análisis , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Malondialdehído/análisis , Estructura Molecular , Tocoferoles/metabolismo , Tocotrienoles/análisis , Tocotrienoles/metabolismo , Vitamina E/análisis , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...